Total Page - 9

UG/4th Sem/MATH/H/19

2019

B.Sc. (Honours)

4th Semester Examination

MATHEMATICS

Paper - C9T

(Multivariate Calculus)

Full Marks: 60

Time: 3 Hours

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. Illustrate the answers wherever necessary.

Unit - I

1. Answer any three questions:

2×3

(a) Show that the limit exists at the origin but the repeated limit does not, for the function

$$f(x, y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, xy \neq 0 \\ 0, xy = 0 \end{cases}$$

(b) For $F(x, y) = x^4 y^2 \sin^{-1} \frac{y}{x}$ show that

$$x\frac{\partial F}{\partial x} + y\frac{\partial F}{\partial y} = 6F$$

- (c) Define directional derivative of the function f(x, y) at the point (a, b). Obtain partial derivative as a special case of it.
- (d) Is f(x, y) = |y|(1+x) differentiate at (0, 0)?
 - (e) Find the maximum or minimum value of

$$f(x, y) = x^3 + y^3 - 3axy.$$

2. Answer any one question:

5×1

- (a) State and prove sufficient condition for differentiability of a function f(x, y) at a point (a, b).
- (b) Let $(a, b) \in D$, the domain of definition of f. If $f_x(a, b)$ exist and $f_y(x, y)$ is continuous at (a, b) then show that f(x, y) is differentiable at (a, b).

- (a) (i) Find the shortest distance from the origin to the hyperbola $x^2 + 8xy + 7y^2 = 225$, z = 0.
 - (ii) If z be a differentiable function of x and y and if $x = c \cosh(u) \cos(v)$, $y = c \sin hv$ sin v then prove that

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = \frac{1}{2}c^2 \left(\cosh 2u - \cos 2v\right)$$

$$\left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2}\right)$$
 5+5

(b) (i) Define total differential of a function f(x, y, z).

Approximate the change in the hypotenuse of a right angled triangle whose sides are 6 and 8 cm, when the shorter side is

lengthened by $\left(\frac{1}{4}\text{cm}\right)$ and the longer is

shortened by $\left(\frac{1}{8}cm\right)$.

(ii) Prove that the volume of the greatest rectangular parallelopiped, that can be

inscribed in the ellipsoid
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
,

is
$$\frac{8abc}{3\sqrt{3}}$$
. (2+3)+5

Unit - II

4. Answer any two questions:

2×2

(a) Let

$$f(x, y) = \begin{cases} \frac{1}{2}, y = \text{rational} \\ x, y = \text{irrational} \end{cases}$$

verify whether $\int_{0}^{1} dy \int_{0}^{1} f(x, y) dx$ exists or not.

(b) Evaluate $\int_{0}^{\infty} \frac{\sin rx}{x} dx$ from $\int_{0}^{\infty} \int_{0}^{\infty} e^{-xy} \sin rx dx dy$ with the help of change of order of integration.

- (c) Evaluate $\iint_R (x^2 + y^2) dx dy$ over the region R bounded by xy = 1, y = 0, y = x, x = 2.
- 5. Answer any two questions:

5×2

- (a) Show in a diagram the field of integration of the integral $\int_{0}^{1} \left(\int_{x}^{1/x} \frac{ydy}{(1+xy)^{2}(1+y^{2})} \right) dx$ and by changing the order of integration, show that the value of the integral is $\frac{\pi-1}{4}$.
 - (b) Are the two iterated integrals $\int_{1}^{\infty} dx \int_{1}^{\infty} \frac{x-y}{(x+y)^3} dy$ and $\int_{1}^{\infty} dy \int_{1}^{\infty} \frac{x-y}{(x+y)^3} dx$ equal? Justify your answer.
 - (c) Evaluate

$$\iiint_E \sqrt{a^2 b^2 c^2 - b^2 c^2 x^2 - a^2 c^2 y^2 - a^2 b^2 z^2} \, dx \, dy \, dz$$

where E is the region bounded by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$$

Unit - III

6. Answer any three questions:

 2×3

(Symbols have their usual meaning)

(a) Find the total work done in moving a particle in a force field given by

$$F = (2x - y + z)\hat{i} + (x + y - z)\hat{j} + (3x - 2y - 5z)\hat{k},$$
along a circle C in the xy-plane $x^2 + y^2 = 9$,
 $z = 0$.

- (b) Evaluate the vector line integral $\int_C \vec{F} \times d\vec{x}$ where $\vec{F} = Z\hat{i}$ and C is the part of the circular helix $\vec{x} = b \cos t\hat{i} + b \sin t\hat{j} + c t\hat{k}$ between the points $(-b, 0, \pi c)$ and (b, 0, 0).
- (c) Prove that $\vec{\nabla} \cdot \left[r \vec{\nabla} \left(\frac{1}{r^3} \right) \right] = 3r 4$, where \vec{r} is the position vector and $r = |\vec{r}|$

(d) Find the equation of the tangent plane to the surface xyz = 4 at the point (1, 2, 2).

(e) If
$$\Delta \phi = (2xyz^3, x^2z^3, 3x^2yz^2)$$
 and $\phi(1, -2, 2) = 4$, find the function ϕ .

7. Answer any one question :

10×1

(a) (i) If
$$\vec{\nabla}.\vec{E} = 0$$
, $\vec{\nabla}.\vec{H} = 0$, $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{H}}{\partial t}$ and $\vec{\nabla} \times \vec{H} = \frac{\partial \vec{E}}{\partial t}$, then show that

$$\nabla^2 \vec{H} = \frac{\partial^2 \vec{H}}{\partial t^2}$$
 and $\nabla^2 \vec{E} = \frac{\partial^2 \vec{E}}{\partial t^2}$.

(ii) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = |\vec{r}|$ and f(x) is a scalar function possessing first and 2nd order derivatives prove that

$$\nabla^2 f(x) = \frac{d^2 f}{dr^2} + \frac{2}{r} \frac{df}{dr}.$$

If $\nabla^2 f(r) = 0$, show that $f(r) = A + \frac{B}{r}$ where A and B are arbitrary constants.

(b) (i) Prove that

$$\vec{\nabla} \times (\vec{\nabla} \times \vec{A}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{A}) - \vec{\nabla}^2 \vec{A}$$

(ii) Let $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$ and $r = |\vec{r}|$. If $f(r) = \log r$ and g(r) = 1/r, $r \neq 0$. Satisfy $2\vec{\nabla}f + h(r)\vec{\nabla}g = 0$ then find h(r).

Unit - IV

8. Answer any two questions:

usual meaning.

2×2

(a) Evaluate

$$\int_{S} (x^{2} dy dz + y^{2} z dz dx + 2z (xy - x - y) dx dy)$$
where S is the surface of the cube
$$0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$$

(b) Show that $\iint_S \vec{r} \cdot d\vec{s} = 3v$ where v is the volume enclosed by the closed surface S and \vec{r} has its

- (c) (i) State Green's theorem in the plane.
 - (ii) If S be any closed surface enclosing a volume V and $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, prove that $\iint_S \vec{F} \cdot \hat{n} \, ds = 6V$.
- 9. Answer any one question:

5×1

(a) Evaluate $\iint_{S} \vec{F} \cdot \hat{n} dS$, where

 $\vec{F} = x\hat{i} - y\hat{j} + (z^2 - 1)\hat{k}$, S is the surface of the region bounded by $x^2 + y^2 = 4$, z = 0, z = 4 in the first octant.

(b) Verify Green's theorem in the plane for $\oint (xy+y^2)dx+x^2dy$ where C is the closed curve of the region bounded by y=x and $y=x^2$.